【关键词】 护坡桩 锚筋 桩岩协同工作
1 概 述
传统的悬臂式护坡桩设计,桩端都有一定的入土深度,并由该深度以下的桩后岩土提供的被动土压力使桩身保持平衡。但是,在特殊的施工条件和地质条件下,桩的入土(岩)深度受到限制,给护坡桩、挡土桩的设计和施工提出了新的课题。
悬臂式护坡桩实际上是一根竖起的悬臂梁,入土部分相当于悬臂梁的固定端。通常悬臂梁有如下两种最基本的受力形式。
当悬臂梁在外荷(p1)的作用下,第一种受力形式中的悬臂梁是利用外力(砖墙的压力)使梁获得平衡(见图1a);第二种受力形式中的悬臂梁则是利用内力(钢筋的拉力)使梁获得平衡,它不需要外部反力也能使悬臂梁正常工作(见图1b)。传统的悬臂式护坡桩受力形式与第一种悬臂梁类似,桩入土(岩)部分的被动土压力相当于砖墙的反力(见图2)。
从第二种受力形式的悬臂梁工作原理可知,只要受拉钢筋的锚固长度足够,悬臂梁便可正常工作,不必象第一种悬臂梁那样要有一定长度的入墙固定端。同理,只要悬臂桩的受拉钢筋有足够的锚固长度,悬臂桩便可正常工作,毋须桩端要有入岩深度。因此,在岩层埋藏较浅、岩质坚硬而又不允许爆破或冲孔的条件下,采用钻孔桩或人工挖孔桩难于达到需要的深度时,锚固的悬臂护坡桩便应运而生。这种将悬臂桩同桩底岩石连成一体的方法,使桩岩协同工作。它包括①整体抗弯抗倾覆;②整体抗剪抗滑移。
2 桩岩协同工作的设计和施工实践(工程实例)
2.1 工程概况
惠阳市教工之家高层住宅楼位于广东惠阳市承修路旁,25层,长52.7m,宽51.3m,采用箱形基础,以-6.3m处的微风化石灰岩作为持力层。北距该楼仅1.9m处有一栋七层教师宿舍楼,宿舍楼采用天然独立基础,柱基尺寸为3m×3m,埋置于-2.0m处的粉质粘土层上;南距该楼2.8m有一栋幼儿园的四层教学楼,天然浅基础;东距该楼4.6m有一栋圆形教学楼,亦为天然浅基础;西距该楼2.5m处有一根街道陶瓷下水管(该楼与周围建筑物的位置关系详见图3)。石灰岩埋藏于-5.5~-6.5m之间,岩质脆硬。地下水不丰富。
2.2 桩型的选择
由于岩质坚硬,钻孔桩和人工挖孔桩入岩都十分困难,采用爆破或冲孔又容易造成邻近房屋开裂。故选用锚固于岩石的悬臂护坡桩作为支护结构。
2.3 护坡桩的设计(以北面护坡桩为例)
(1)主动土压力的计算
(2)七层宿舍楼荷载所产生的主动土压力
其中,七层宿舍楼的重量折算成填土高度为7.36m。
(3)倾覆弯矩的计算
每单位米长的土体对支护结构的根部产生的弯矩为:M=EA1×h2+EA2×h3=98.9×2.1+350×1.4=698kN.m(见图4)。
(4)护坡桩的配筋计算
采用?1000人工挖孔桩,混凝土等级为C20,间距1.5m,则每根桩所承受的最大弯矩为:
护坡桩试配1625作为主筋,则必须满足(文献[1]):
最后计算得:
M桩<M′桩,结构抗弯抗倾覆安全。
(5)锚筋数量和锚固长度的确定
锚筋数量:经计算,主筋为1625,锚筋数量至少也需1625,利用主筋兼作锚筋,直接锚入岩石,水泥浆灌孔。
锚固长度的计算:锚固长度主要取决于三大因素:①灌浆材料与钢筋之间的握裹力;②锚固体与岩石之间的极限侧阻力;③锚固体端部岩石破裂面的总抗拉力。分别计算,取三个锚固长度中的最大值。
由水泥浆与钢筋之间的握裹力所决定的锚固长度(Lm),只要满足:Tu≤πdLmu即可。其中,Tu为单根锚筋的极限抗拔力,取Tu=152039N;d为锚筋直径,d=25;u为水泥浆对钢筋的平均握裹力,取u=4.17N/mm2(水泥标准抗压强度的10%)。最后算出:Lm=464.6mm。
利用锚固体与岩石之间的极限侧阻力求锚固长度,只要满足:Tu≤πDτzLm即可(详见文献[2])。其中,D为钻孔孔径,τz为锚固段周边的抗剪强度,取τz=1.2N/mm2(详见文献[3]),取Tu=152039N(单根25钢筋抗拉力),钻孔孔径为30mm,代入数据,可算出Lm=1344mm,经与握裹锚固长度比较,后者起决定作用,取Lm=1500mm。
验算1500mm深处岩石破裂面总的抗拉能力是否满足(见图5)。
破裂面圆台体表面积S=9420000mm2,取石灰岩抗拉强度为其抗压强度的六十分之一。取抗压强度为60,则抗拉强度为1,破裂面岩石总抗拉力为9420000N。
全部锚筋(实际上只有受拉区锚筋)总拉力为:16×310×490=2430400N,小于破裂面岩石的总抗拉力,破裂面安全。1500mm锚固长度足够。
(6)桩岩接触面抗剪抗滑移验算
如果忽略混凝土与岩石结合处的抗剪能力,则只能由锚筋的抗剪能力抵抗滑移和剪切。
桩底1625锚筋的总抗剪能力为:
〔τ〕=100×7856=785600N,因桩的间距为1.5m,所以每桩承受的水平推力为:
F桩=1.5×(EA