工程机械上常有的检测内容主要是电流、气压、油压、油温、水温与转速等,而对于一些十分需要的项目却没有相应的测量设备或仪表,如电压、工作时间计数、流量、卸载高度及负荷重量等。又由于其种类、型号各异,造成在仪表盘上布置困难,有的机械上面多达十余个仪表,大小不同,样式不同,使整个仪表盘看起来零乱,而且不便于观察,既增加了安装布置的复杂性,也降低了使用上的可靠性。
工程机械现有的智能诊断系统一般都基于计算机系统,有的还需要计算机网络来实现,而工程机械实际作业大多在野外进行,由于很难具备上述所需的条件,这将导致现有的许多诊断技术不能在时机中应用。如何解决野外条件下对有故障的机械进行快速检测和维修,已成为目前应用中需解决的问题。
基于上述原因,我们认为有必要开发一套全新概念上工程机械状态检测与故障诊断系统,从而可以有效提高工程机械状况检测的准确性及可靠性。为此,文章应用数据采集、信号处理分析、专家系统等技术,研制并开发了一套全新概念的工程机械监测系统,可通过对机械状态测试、数据分析与故障诊断,确定机械的实时工作状态及所需的各种参数,确定机械的故障形式和故障部位,直至给出发生故障的零部件或元器件,从而对有故障的机械(特别是电路系统)进行快速监测和维修。
2 系统总体设计
2.1 系统的硬件组成
工程机械一体化监测与故障诊断系统的硬件部分主要由传感器、中央处理器、显示装置、控制装置4大部分组成,实现信号采集、显示管理和时钟计时。它能对通信部分、键盘部分以及参数库的传递进行管理。由于该系统所要测量的参数较多,且类型不同,所以要采用的传感器也就依具体情况来选用,但总体的原则是均采用现代电子式传感器,既可提高测量精度,也有利于对信息的传递与处理。如选用电磁式速度传感器、热电偶温度传感器、半导体压力传感器、涡流流量传感器、热线流量传感器等。系统总体结构设计如图1所示。
2.2 系统工作原理
系统工作原理如图2所示,此系统集监测、诊断、学习于一体,在默认状态下,系统的缺省工作模式为监测模式。系统工作时,各传感器将采集到的信号转换后送至处理器(Msp430),处理器通过专家系统调用数据库,进行综合比较判断分析,如果可以确认系统为正常状态,则继续对系统进行检测;反之,若判断异常,则报警并进入诊断模式,如果根据数据库中已有的案例集,可以判断故障原因, 则给出故障原因,并提示维修方法;如果判断不出故障原因,则进入学习模式,记录机械的状态参数,并借助专家的帮助建立新的故障案例,扩展知识库。
3 系统硬件设计及各部分工程实现
3.1 信号采集部分
信号采集部分可采集机械电路部分的交直流电压、电流、阻抗、电容和点火装置的点火延时等参数,采集的数据既可供本监测系统诊断使用,也可将数据传递给主计算机以供进一步的诊断。电路信号采集的原理图见图3。
3.2 实时时钟部分
系统在运行时需要实时时钟信息,因此在本系统设计时,给系统增加了实时时钟,采用了一个RI-COH(理光)的实时时钟芯片RS5C372。RS5C372是一种12C总线的串行接口的实时时钟芯片,它具有工作电压范围宽(1.4~6V)、维持电流小、能提供毫秒、秒、分、小时、时期和年等的实时计数的特点。
3.3 键盘管理部分
单片机的键盘部分的实现方法通常由直接译码法,或是行、列扫描法。前者的优点是电路简单、程序实现容易,但缺点是所占用系统的I/O口线多,要实现n个按键就需要n条I/O口线。因此该方法只适用于按键较少及系统资源较多的场合。而后者由于使用了行、列扫描,因此用较少的I/O口线可以实现较多的按键,比如,使用2n根I/O口线可实现n×n个按键。此方法适用于那些系统资源缺乏,但同时需要大量按键的场合。由于行、列扫描法为了得到按键值,需要对键盘不停的扫描,这样一方面要占用MCU的时间,另一方面,又增加了系统的功耗。因此在本系统中,充分利用了Msp40强大的中断功能,以中断方式实现了行列式管理键盘。
3.4 通信接口模块
为了能充分发挥机算机强大的计算、存贮以及显示能力,并且随时根据需要对本系统内高容量MMC卡中存贮的各种数据库的数据进行数据更新,以适应新机械设备的诊断或是对原机械设备增加新的测试项目、增加新的诊断经验等,设置了一个与机算机进行通信的标准串行通信接口,可以传输多种资料如各种汉字库、图片库和参数库等。标准串行通信接口的原理如图4所示,图中电路采用了RS232的接口